Excursions of Diffusion Processes and Continued Fractions
نویسندگان
چکیده
It is well-known that the excursions of a one-dimensional diffusion process can be studied by considering a certain Riccati equation associated with the process. We show that, in many cases of interest, the Riccati equation can be solved in terms of an infinite continued fraction. We examine the probabilistic significance of the expansion. To illustrate our results, we discuss some examples of diffusions in deterministic and in random environments.
منابع مشابه
The Formal Theory of Birth - and - Death Processes , Lattice Path Combinatorics , and Continued Fractions
Classic works of Karlin-McGregor and Jones-Magnus have established a general correspondence between continuous-time birth-and-death processes and continued fractions of the Stieltjes-Jacobi type together with their associated orthogonal polynomials. This fundamental correspondence is revisited here in the light of the basic relation between weighted lattice paths and continued fractions otherwi...
متن کاملOn the decomposition of excursions measures of processes whose generators have diffusion coefficients discontinuous at one point
The coefficients in the decomposition of the excursions measure as convex combination of excursions measures of reflected processes are computed in order to characterize the discontinuity at one point of the diffusion coefficient. In some sense, this result extends to general diffusions a similar one for the skew Brownian motion, and we advocate it may be used in Monte Carlo methods for discont...
متن کاملPartial Sums of Excursions along Random Geodesics and Volume Asymptotics for Thin Parts of Moduli Spaces of Quadratic Differentials
For a non-uniform lattice in SL(2, R), we consider excursions of a random geodesic in cusp neighborhoods of the quotient finite area hyperbolic surface or orbifold. We prove a strong law for a certain partial sum involving these excursions. This generalizes a theorem of Diamond and Vaaler for continued fractions [9]. In the Teichmüller setting, we consider invariant measures for the SL(2, R) ac...
متن کاملروش مسیر یابی ذره به منظور پیش بینی حرکت نفت در دریا
A two-dimensional two-phase numerical model is developed to predict transport and fate of oil slicks which resulted the concentration distribution of oil on the water surface. Two dimensional governing equation of fluid flow which consists mass and momentum conservation was solved using the finite difference method on the structured staggered grid system. The resulted algebric equations were so...
متن کاملDecomposition at the Maximum for Excursions and Bridges of One-dimensional Diffusions∗
In his fundamental paper [25], Itô showed how to construct a Poisson point process of excursions of a strong Markov process X over time intervals when X is away from a recurrent point a of its statespace. The point process is parameterized by the local time process of X at a. Each point of the excursion process is a path in a suitable space of possible excursions of X, starting at a at time 0, ...
متن کامل